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Abstract 

Background: Overweight and obesity are defined by an anomalous or excessive fat 
accumulation that may compromise health. To find single‑nucleotide polymorphisms 
(SNPs) influencing metabolic phenotypes associated with the obesity state, we analyze 
multiple anthropometric and clinical parameters in a cohort of 790 healthy volunteers 
and study potential associations with 48 manually curated SNPs, in metabolic genes 
functionally associated with the mechanistic target of rapamycin (mTOR) pathway.

Results: We identify and validate rs2291007 within a conserved region in the 3′UTR of 
folliculin‑interacting protein FNIP2 that correlates with multiple leanness parameters. 
The T‑to‑C variant represents the major allele in Europeans and disrupts an ancestral 
target sequence of the miRNA miR‑181b‑5p, thus resulting in increased FNIP2 mRNA 
levels in cancer cell lines and in peripheral blood from carriers of the C allele. Because 
the miRNA binding site is conserved across vertebrates, we engineered the T‑to‑C sub‑
stitution in the endogenous Fnip2 allele in mice. Primary cells derived from Fnip2 C/C 
mice show increased mRNA stability, and more importantly, Fnip2 C/C mice replicate 
the decreased adiposity and increased leanness observed in human volunteers. Finally, 
expression levels of FNIP2 in both human samples and mice negatively associate with 
leanness parameters, and moreover, are the most important contributor in a multifac‑
torial model of body mass index prediction.

Conclusions: We propose that rs2291007 influences human leanness through an 
evolutionarily conserved modulation of FNIP2 mRNA levels.
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Background
Overweight and obesity are caused by an excessive and anomalous accumulation of adi-
pose tissue and constitute a risk to health [1]. According to the World Health Organiza-
tion (WHO), obesity is one of the most alarming health problems globally, excluding the 
sub-Saharan Africa and Asia. A body mass index (BMI, defined as the following ratio: 
weight (kg)/height (m)2) between 25 and 30 kg/m2 is considered overweight in adults, 
while a BMI exceeding 30kg/m2 is defined as obese state. Moreover, an elevated BMI 
strongly associates with several metabolic abnormalities, including insulin resistance 
and metabolic syndrome, themselves prominent risk factors for type 2 diabetes (T2D), 
cardiovascular diseases (CVDs) [2], and cancer [3, 4]. In addition, obesity and impaired 
metabolic health recently emerged as key risk factors for COVID-19 [5] and immune 
system dysfunction [6].

Both genetic and environmental factors contribute to the development of overweight 
and obesity. Lifestyle habits such as excessive caloric intake and insufficient physical 
activity are critical drivers of overweight and obesity [7]. In addition, genome-wide asso-
ciations studies (GWAS), among other genetic approaches to define molecular drivers of 
obesity, have established strong associations between genetic variants and elevated BMI, 
being the fat mass and obesity-associated gene (FTO), the first genetic determinant of 
human body mass [8, 9]. A Genetic Investigation of ANthropometric Traits consortium 
(GIANT) meta-analysis (including more than 339,000 participants) linked a total of 97 
loci with BMI, 56 of which were novel. The 97 loci account for 2.7% of BMI variation, 
and genome-wide studies estimate that common variants account for more than 20% of 
BMI variation [10–12]. Thus, genetic influence on BMI is still largely unknown, and in 
addition, most known associations have not been functionally validated.

It is not surprising that both genetic and environmental factors that contribute to obe-
sity modulate cell signaling pathways responsive to nutrients and metabolic hormones. 
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Among these pathways, the mechanistic target of rapamycin complex 1 (mTORC1) sign-
aling pathway concurrently senses energy, nutrients, and growth factors and couples 
their sufficiency to the execution of anabolic cell growth and division [13]. MTORC1 
itself is composed of the mTOR kinase and essential adaptor proteins (Raptor and 
mLST8), and dozens of proteins within several multimeric complexes participate in con-
vergent regulatory cues that directly and indirectly control activation and inhibition of 
mTORC1. Substantial experimental evidence supports that mTORC1 controls several 
cellular and organismal processes that influence BMI, including food intake, insulin 
signaling, energy storage and consumption, metabolic activity, synthesis and secretion of 
hormones, and inter-organ communication [13–15]. Thus, it is reasonable to postulate 
that genetic variants affecting components of the mTORC1 pathway may contribute to 
determine overweight, obesity, and the associated abnormal metabolism.

While several studies have found single-nucleotide polymorphisms (SNPs) within 
components of the mTORC1 pathway affecting cancer susceptibility [16–18], mirror 
approaches establishing an association with increased BMI are awaited: to our knowl-
edge, no genetic or epigenetic studies have linked SNPs in components of the mTOR 
pathway with overweight and obesity. The identification of such variants could pave the 
way toward tailored, precision therapeutic approaches targeting the mTORC1 pathway 
to combat the pathological states associated to elevated BMI.

Here, we measured BMI and multiple anthropometric and clinical features related to 
obesity in a cohort of 790 healthy volunteers and analyzed potential associations with 
48 manually curated SNPs in metabolic genes with known functional associations to the 
mTORC1 pathway. We found an association between multiple metabolic parameters 
related to obesity and a human-specific SNP within an evolutionarily conserved region 
of the 3′UTR of the folliculin-interacting protein 2 (FNIP2) that affects mRNA stability. 
Such associations were replicated in a novel knock-in mouse strain genetically tailored 
to express the human-specific single-nucleotide variant. Moreover, in addition to the 
genetic association, the levels of FNIP2 mRNA inversely correlate with anthropometric 
and clinical features of obesity. Thus, we propose that both rs2291007 and FNIP2 blood 
mRNA levels are linked to obesity.

Results
FNIP2 polymorphism rs2291007 is associated with metabolic and obesity‑related 

phenotypes

We selected a total of 38 genes encoding proteins with metabolic functions linked to the 
mTOR pathway (Additional file 1: Fig. S1). We then manually curated potentially func-
tional SNPs to perform a customized genotyping chip, according to the following crite-
ria: SNPs located in coding regions, regulatory SNPs of 5′UTR or 3′UTR sites or SNPs 
in splicing sites. In addition, a threshold of 15% was established in European minor allele 
frequency (MAF).

We selected a total of 56 SNPs in 25 genes and genotyped them in a cohort of 790 
healthy individuals. Their genomic positions are summarized in Additional file  2: 
Table S2. Evidence of departure from Hardy-Weinberg equilibrium (HWE) was observed 
for eight SNPs. They were excluded from the analysis, although none of them remained 
statistically significant after a conservative Bonferroni correction for multiple testing.
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Representation of −log10 p-values for additive model for each metabolic char-
acteristic among the 790 Spanish volunteers are detailed in Fig.  1A and Additional 
file  1: Fig. S2. With a relatively permissive p-value threshold of 0.05, 33 SNPs in 17 
genes were associated with 19 of 21 metabolic characteristics analyzed in our popu-
lation, suggesting the relevance of genetic variations within selected genes in meta-
bolic function and phenotype. Detailed information on rs number, genes, beta, 95% 
CI, and p-values for each metabolic association are summarized in Additional file 2: 
Table S3. Four SNPs located in three genes (two in FNIP2 and one in each of FLCN 
and RPTOR) were associated with metabolic phenotypes (FNIP2 with muscle and 
fat mass, visceral fatness, weight, BMI, and waist circumference; FLCN with hip cir-
cumference and RPTOR with systolic arterial pressure). Among these SNPs, the two 
located in FNIP2 gene maintained statistical significance after applying the Bonfer-
roni correction for multiple comparisons (Fig.  1A). Both were associated with fat 
mass (rs17286116, beta=1.31, 95% CI (0.55–2.07), Bonferroni-corrected p-value= 
0.04 and rs2291007, beta=1.33, 95% CI (0.59–2.07), Bonferroni-corrected p-value= 
0.03). rs2291007 was also associated with muscle mass (beta= −0.64, 95% CI (−0.99 
to −0.29), Bonferroni-corrected p-value=0.02) (Fig. 1A).

Folliculin Interacting Protein 2 (FNIP2) Gene

R2 rs10857319 rs17286116 rs2291007

rs10857319 1.0 0.329 0.447

rs17286116 0.329 1.0 0.735

rs2291007 0.447 0.735 1.0

B

-2

0

2

4

H
ip

ci
rc

um
fe

re
nc

e

W
ai

st
ci

rc
um

fe
re

nc
e

V
is

ce
ra

l
F

at
ne

ss B
M

I

W
ei

gh
t

F
at

 M
as

s

M
us

cl
e 

M
as

s

be
ta

rs2291007

0
0.5

1
1.5

2
2.5

3
3.5

4

M
T
O
R

S
Z
T
2

LA
M
T
O
R
5

S
E
C
13

LA
M
T
O
R
3

F
N
IP
2

S
K
P
2

S
LC

38
A
9

F
N
IP
1

LA
R
S

R
R
A
G
D

M
IO

S
LA

M
T
O
R
4

D
E
P
T
O
R

S
E
S
N
3

R
H
E
B
L1

W
D
R
24

F
LC

N

R
P
T
O
R

S
E
H
1L

R
N
F
15

2

K
P
T
N

G
A
T
S
L3

D
E
P
D
C
5

R
R
A
G
B

-lo
g1

0 
(p

-v
al

ue
)

BMI Weight Visceral Fatness Fat Mass Muscle Mass Hip circumference Waist circumferenceA

C

Fig. 1 Genetic associations. A Representation of −log10 p‑values for phenotypic associations with metabolic 
characteristics in 790 volunteers. Each point represents one SNP within a gene. Associations of the SNPs 
with body mass index (BMI), weight, visceral fatness, fat and muscle mass, and hip and waist circumference 
were modeled through linear regression on the SNP adjusted by sex and age. The −log10 p‑values following 
an additive model for the SNPs (effect in the homozygote minor allele is twice as much as that of the 
heterozygote) were represented. B Gene location and linkage disequilibrium (LD) among rs10857319, 
rs17286116, and rs2291007. LD was calculated using LDLink (https:// ldlink. nci. nih. gov/). C rs2291007 
associations with several metabolic characteristics. Associations were modeled through linear regression 
on the rs2291007 adjusted by sex and age following an additive model. Ninety‑five percent confidence 
intervals were used in beta estimates. Bonferroni (Bonf.) method was applied for multiple test correction of 
the p‑values

https://ldlink.nci.nih.gov/


Page 5 of 21Fernández et al. Genome Biology          (2022) 23:230  

We further analyzed the three SNPs detected in FNIP2 genomic region 
(rs10857319, rs17286116, and rs2291007), located in 5′UTR, intronic, and 3′UTR 
regions, respectively (Fig.  1B and Additional file  2: Table  S2). rs17286116 and 
rs2291007 share linkage disequilibrium, with a R2 value of 0.735 (Fig. 1B), explain-
ing the overlapping associations detected. rs2291007, located in FNIP2 3′UTR 
region, had the highest beta and lowest p-values. Moreover, conditional analysis 
identified rs2291007 as the strongest independent signal for this locus, because add-
ing the rs2291007 SNP to the analysis resulted in the other two SNPs (rs10857319 
and rs17286116) losing statistical significance in predictive models for fat mass 
adjusted by sex and age. In addition to the associations with fat and muscle mass, 
the minor allele T of rs2291007 positively associated with several metabolic phe-
notypes, including weight and visceral fatness (beta= 2.27, 95% CI (0.91–3.62); 
p-value=0.001, Bonferroni-corrected p-value= 0.06 and beta= 0.5, 95% CI (0.2–
0.81); p-value=0.001, Bonferroni-corrected p-value= 0.08 respectively). We also 
detected various association trends of rs2291007 with BMI, waist circumference, 
and hip circumference (beta= 0.68, 95% CI (0.24–1.12); p-value=0.002, beta= 1.77, 
95% CI (0.53–3); p-value=0.005 and beta= 1.28, 95% CI (0.04–2.51); p-value=0.04 
respectively) (Fig. 1C, Additional file 2: Table S3). No statistically significant correla-
tions of rs2291007 with lipid or glucose profile and heart or nutritional parameters 
were found (Additional file 1: Fig. S2 and Additional file 2: Table S3).

In summary, our genetic study on 48 loci revealed that minor allele T of rs2291007 
in FNIP2 gene is linked to metabolic and obesity-related phenotypes, being associ-
ated with elevated fat mass, visceral fatness, weight, BMI, and waist and hip circum-
ferences, and with decreased muscle mass in healthy individuals of European origin.

miR‑181b‑5p selectively binds the 3′UTR of the FNIP2 T allele

SNP rs2291007 is a C/T variation in the 3′UTR of FNIP2 and chromosome 4 open 
reading frame 45—C4orf45—gene, on chromosome 4. This genomic region is evo-
lutionary conserved across vertebrates, as illustrated in Fig.  2A. The T allele in 
rs2291007 is ancestral and the common allele in the African population (Fig. 2B). In 
the European population, and in our study of healthy individuals with European ori-
gin, T is the minor allele of rs2291007 (Fig. 2B).

According to TargetScanHuman predictions (http:// www. targe tscan. org/ vert_ 
72/) [19], the sequence encompassing the SNP is a putative target region for miR-
181b-5p binding (Fig.  2A). We in silico tested putative binding of miR-181b-5p to 
the rs2291007 region using Sfold (https:// sfold. wadsw orth. org/ cgi- bin/ index. pl) 
[20] (Fig.  2C). According to structural predictions, miR-181b-5p binds exclusively 
the T allele with two possible secondary conformations (Fig.  2C), and no sites for 
such binding are predicted for the C allele abundant in Europeans. Hence, only the 
T ancestral allele is potentially subjected to binding to, and thus, to regulation by, 
miR-181b-5p.

To validate the interaction of this miRNA with rs2291007 region, we performed 
dual-luciferase assays (Fig.  2D). In agreement with structural predictions, miR-
181b-5p downregulated the activity of a reporter construction carrying the T, but 

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
https://sfold.wadsworth.org/cgi-bin/index.pl
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not the C, allele. This result strongly suggests that miR-181b-5p selectively controls 
the expression of the T allele of FNIP2 rs2291007 through binding to the 3′UTR.

Levels of FNIP2 mRNA associate with metabolic and obesity‑related phenotypes

Following on the observation that miR-181b-5p binds to the sequence containing 
the T allele of rs2291007, we sought evidence for a potential functional interaction 
between miR-181b-5p and rs2291007 to modulate the expression of FNIP2. First, we 
analyzed FNIP2 mRNA levels in a panel of 965 Catalogue of Somatic Mutations in 
Cancer (COSMIC) cell lines [21] and found that rs2291007 minor homozygous cell 
lines (TT) (22.2%) displayed statistically significant decreased expression of FNIP2, 
as compared to cells carrying at least one copy of the C allele (77.8%) (Fig.  3A), 
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consistently with the predicted loss of negative regulation by miR-181b-5p in the C 
allele.

Next, we aimed to confirm decreased FNIP2 expression in carriers of the rs2291007 
T allele by analyzing peripheral blood mononuclear cells (PBMC) of 161 healthy vol-
unteers. Indeed, we found that homozygous TT individuals (25.46%) also showed 
lower FNIP2 expression (p-value= 0.045) than individuals carrying at least one C allele 
(74.54%). When adjusted to sex and age, the associated p-value increased (p-value= 0.1) 
(Fig. 3B). We also analyzed the expression of FNIP2 and miR-181b-5p in a subset of 89 
healthy volunteers, and analysis of co-expression of FNIP2 and miR-181b-5p showed an 
inverse correlation trend exclusively in carriers of T allele (r2=0.577, p-value=0.18 and 
r2=−0.777, p-value=0.35), while no trend was observed in carriers homozygous for the 
C allele (r2=0.004, p-value=0.99) (Additional file 1: Fig. S3A). These results support the 
existence of a functional relationship between miR-181b-5p and FNIP2 expression by the 
selective binding to the T allele in rs2299007. We next analyzed the association between 
the expression of FNIP2 and clinical parameters of healthy volunteers. Interestingly, 
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and consistently with our expectations, the expression levels of FNIP2 strongly associ-
ated with decreased weight, BMI, fat mass, visceral fatness, waist, and hip circumfer-
ences, systolic (SBP) and diastolic (DBP) blood pressure, blood levels of triglycerides and 
glycated hemoglobin, and low basal metabolism, and with increased muscle mass, all 
with high statistically significant p-values (Fig. 3C and Additional file 2: Table S4). These 
results support FNIP2 expression in blood as a powerful marker of metabolic alterations.

Because FNIP2 is part of a heterotrimeric complex, we also analyzed expression of 
the other members, FNIP1 and FLCN. FNIP2 gene expression significantly correlated 
with both FNIP1 and FLCN (Additional file 1: Fig. S3B) and we observed associations 
between the levels of FLCN expression and increased weight, BMI, fat mass, visceral fat-
ness, waist and hip circumferences, DBP, and blood levels of glucose, leptin, and triglyc-
erides; and decreased muscle mass (Fig. 3D and Additional file 2: Table S4). In contrast, 
we did not detect any relationship between the expression of FNIP1 or miR-181b and 
phenotypic characteristics related to overweight or obesity (Additional file 2: Table S4).

A knock‑in mouse model for rs2291007

The ancestral T allelic variant is evolutionary conserved in mammals (Fig. 2A) and pre-
sent in the 3′UTR region of mouse Fnip2 together with the surrounding seed region for 
miRNA-181b-5p (Fig. 4A). Thus, we decided to genetically engineer the C allelic variant 
in the mouse genome and to assess its functional impact on mouse weight and fat con-
tent. We used CRISPR/Cas9 genome engineering [22] in mouse zygotes to knock-in the 
T-to-C change. For technical reasons, we substituted one additional nucleotide in +6 
position to disrupt the PAM sequence (a G-to-C change) so as to prevent recognition 
by CRISPR/Cas9 and unwanted sequence retargeting (Fig. 4A). Importantly, this addi-
tional change does not alter the seed region nor the predicted binding of miR-181b-5p 
(Additional file  1: Fig. S4A). Blastocytes of pure C57BL/6 background have raised to 
founder targeted chimeras, and Fnip2T/T, Fnip2T/C, and Fnip2C/C mice were obtained at 
the expected Mendelian ratios from heterozygous breeders (Additional file 1: Fig. S4B). 
Macroscopically, Fnip2C/C and Fnip2T/C knock-in mice were indistinguishable from 
those expressing the ancestral T allele in homozygosity.

There are no commercially available antibodies against mouse Fnip2 to assess a poten-
tial difference in Fnip2 protein levels in Fnip2T/T versus Fnip2C/C cells and organs, so 
we first measured the levels of Fnip2 mRNA in liver and gonadal WAT samples from 
ad libitum fed and 16-h-fasted mice. In contrast to the positive association between the 
C allele and steady-state levels of FNIP2 mRNA observed in human cancer cell lines 
and in PBMC from healthy volunteers (Fig. 3), we found no association in mouse tis-
sues (Fig. 4B and Additional file 1: Fig. S4C). We next obtained Fnip2T/T and Fnip2C/C 
mouse embryonic fibroblasts (MEFs) and quantified the levels of Fnip2 mRNA in com-
plete culture medium and in medium without amino acids to modulate the expression 
of Fnip2. Although we observed the expected increase in Fnip2 mRNA levels upon 
amino acid deprivation, there was no difference between the levels of Fnip2 mRNA in 
Fnip2T/T and Fnip2C/C MEFs (Fig. 4C). Consistently, the regulation of the mTORC1 path-
way upon amino acid deprivation and stimulation, revealed by the phosphorylation of 
S6K1 in threonine 389, and by the upshift in the band corresponding to total levels of the 
transcription factor EB (TFEB) band caused by mTORC1-dependent phosphorylation, 
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were indistinguishable between Fnip2T/T and Fnip2C/C MEFs (Fig. 4D). The absence of 
evidence for an increase in the mRNA levels in mouse cells expressing the C allele in 
homozygosity in the assayed conditions does not rule out that, under specific perturba-
tions, such difference may exist; but to exclude the possibility that similar mRNA levels 
of Fnip2 may be a consequence of lack of expression of the miR-181b-5p, we measured its 
levels in cells cultured with and without amino acids for 2 h. miR181b-5p was detected 
at similar levels in Fnip2T/T and Fnip2C/C MEFs in both culture conditions (Additional 
file 1: Fig. S4E). Alternatively, if miR181b-5p is present, a prediction is that the C variant 
should be more stable than the T variant, regardless of other compensatory mechanisms 
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that may obscure such difference under steady-state synthesis of Fnip2 mRNA. Thus, 
we halted new synthesis of all mRNA with Actinomycin D, inhibitor of RNA polymer-
ase II activity, and measured the relative decay of Fnip2 mRNA levels in Fnip2T/T and 
Fnip2C/C MEFs. Consistently with impaired binding of the Fnip2C variant to miR-81b-5p, 
the decay of Fnip2 mRNA levels was significantly slower in Fnip2C/C cells, in comparison 
to that of Fnip2 mRNA in Fnip2T/T cells (Fig.  4E, F), indicating an increased stability 
of Fnip2 mRNA in presence of rs2291007 C allele upon an abrupt interruption of new 
mRNA synthesis. In summary, the T-to-C substitution in mouse Fnip2 does not have 
obvious effects on mTORC1 activity in the conditions assayed, neither does it lead to a 
detectable increase in Fnip2 mRNA in steady state, but results in an increased stability 
of the Fnip2 mRNA, a result that supports a disrupted binding of miR-181b-5p to the 
Fnip2C variant.

As mentioned, Fnip2C/C mice were viable, macroscopically indistinguishable, and fer-
tile. While no differences in body weight were seen between adult Fnip2T/T and Fnip2C/C 
mice (Fig. 5A), we observed a negative correlation between mRNA levels of Fnip2 and 
mouse body weight (Fig. 5B), in sharp consistency with the association found in human 
samples (Fig. 3C). Such negative association with body weight was exclusive for Fnip2, 
as we saw no statistically significant association between the mRNA levels of the other 
two components of the Folliculin complex, Fnip1 and Flcn, and body weight (Additional 
file  1: Fig. S5A). Nevertheless, a positive association on the mRNA levels of the three 
components of the complex (Fnip2, Fnip1, and Flcn) was observed (Additional file  1: 
Fig. S5B). Strikingly, in agreement with the association found in healthy volunteers 
(Fig. 1A, C), a significant decrease in the fat content was recapitulated in 5–6-week-old 
Fnip2C/C male mice, and in female Fnip2C/C mice analyzed at 5–6 and 11–15 weeks of 
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age (Fig. 5C, D), and a similar trend was detected in 1-year-old females (Additional file 1: 
Fig. S5C). This difference does not seem to occur by a selective decrease on specific 
WAT depots, but from a general reduction in both visceral and subcutaneous depots 
(Additional file 1: Fig. S5D). To further investigate the consequences of the expression of 
the Fnip2C variant in mice, we performed a transcriptomic analysis of two metabolically 
relevant organs, liver, and visceral WAT, from Fnip2T/T and Fnip2C/C mice. Strikingly, 
while only 9 genes were differentially expressed in livers, 4795 genes were differentially 
expressed in WAT from Fnip2C/C versus Fnip2T/T mice, indicating a comparably larger 
effect of the expression of the SNP in Fnip2 in adipose tissue, as compared to liver. We 
next conducted Gene Set Enrichment Analyses (GSEA) in samples from Fnip2C/C versus 
Fnip2T/T livers and WAT. Strikingly, among the top 5 signatures identified in both liver 
and WAT analyses, “adipogenesis,” “fatty acid metabolism,” and “mTORC1 signaling” 
were enriched samples from of Fnip2T/T mice (Fig. 5E, F; Additional file 1: Fig. S5E and 
S5F), consistently with the increased fat content observed in Fnip2T/T mice.

Thus, altogether, the mouse genetic data strongly support that the 3′UTR of FNIP2 is 
an evolutionary conserved genetic determinant of lean-fat mass ratio.

Multifactorial genetic model for overweight and obesity risk

Overweight and obesity are complex conditions modulated by several causes, so we 
designed a multifactorial model to predict BMI taking into consideration the relevance 
of genetic susceptibility of the FLCN-FNIP complex investigated herein. We derived 
a linear regression model that included the rs2291007 SNP (in additive form), three 
gene expression variables (FNIP2, FNIP1, and FLCN), plus sex and age. Importantly, 
the inclusion of a FNIP2*rs2291007 interaction was significant and increased the opti-
mism-corrected R2, so it was accepted in the final model. Figure 6A shows the estimated 
parameters of this model, and Fig. 6B displays the result of the bootstrap validation. We 
found that increased FNIP2 expression associates with a decreased BMI (beta=−3.08, 
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95% CI (−3.92, −2.25), p-value= 2.12×10−15). Conversely, the beta parameter for the 
FNIP2*rs2291007 interaction is positive (beta=0.636, 95% CI (0.35, 1.52), p-value= 
0.03), which means that the inclusion of a T variant results in a significantly less negative 
slope, and thus to a less dramatic decrease of BMI with higher FNIP2 expression values. 
The inclusion of miR181-5p expression did not result in an improved model nor did the 
interactions between gender and rs2291007 (gender*rs2291007) or between gender and 
FNIP2 gene expression (gender*FNIP2), neither the use of a codominant or dominant 
assumption for the SNP.

The variable importance plot for the multifactorial model of BMI prediction (Fig. 6C) 
establishes that the most important variable is the FNIP2 expression, followed by age, 
FLCN, FNIP1, and the FNIP2*rs2291007 interaction. Collectively, these results provide 
evidence that rs2291007-FNIP2-Folliculin complex could modulate overweight and 
obesity.

Discussion
Obesity and overweight are prevalent in developed countries and predispose to several 
comorbidities and diseases, such as most types of cancer. Recently, the impact that obe-
sity has on the immune system has acquired a novel dimension of importance for the 
quality of life of the global population [5] because of the positive association between 
weight and adverse effects of SARS-CoV2 infection. Obesity is preventable, but causes 
and consequences must be deeply understood to design efficient preventive measures 
and tools [23]. Many parallel efforts have been undertaken to understand the genetic 
bases of this disease, including several GWAS studies that have opened a window of 
knowledge with the early identification of the FTO gene as the first genetic determinant 
of human body weight [8, 9]. While additional studies have further contributed to pin-
pointing genetic bases for the predisposition to obesity, this knowledge can explain so 
far approximately 20% of genetic predisposition. We restricted a genetic window of anal-
ysis to components of a metabolically relevant pathway, the mTOR pathway (Additional 
file 1: Fig. S1), due to its involvement in the sensing of energy, nutrients, and stress, as 
well as growth factors, and its deregulation in the obesity state [24].

In this work, our analysis of common genetic variations in this selected set of genes 
in almost 800 individuals of European origin revealed an association of rs2291007 in 
FNIP2 with BMI and phenotypic characteristics of the obese state (Fig. 1A). The poly-
morphism rs2291007 is located in the 3′UTR of the FNIP2 locus, and it has not been 
previously associated in the literature with overweight or obesity. Other variations in 
the FNIP2 gene have been associated in GWAS studies with several conditions (depres-
sion, intelligence; schizophrenia, smoking initiation; coffee consumption measurement) 
but none related to BMI or metabolic alterations (https:// www. ebi. ac. uk/ gwas/ genes/ 
FNIP2). Notably, germ-line mutations in other members of the folliculin complex, FLCN 
gene, are associated with Birt-Hogg-Dube syndrome, which is characterized by fibrofol-
liculomas, renal tumors, lung cysts, and pneumothorax [25]. For first time, this study 
describes that the minor allele T of rs2291007 in the FNIP2 gene is associated with met-
abolic and obesity-related phenotypes (elevated fat mass, visceral fatness, weight, BMI, 
and waist and hip circumferences) and with decreased muscle mass in healthy European 
individuals (Fig. 1A,B).

https://www.ebi.ac.uk/gwas/genes/FNIP2
https://www.ebi.ac.uk/gwas/genes/FNIP2
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The aforementioned SNP is located within a conserved microRNA binding sequence. 
Typically, microRNAs posttranscriptionally regulate mRNA expression by binding to the 
3′UTR of target mRNAs [26]. Because miRNA binding sites are constrained by second-
ary stabilizing interactions with the target mRNAs, SNPs located in 3′UTR sequences 
can result in differential miRNA binding, as they may either abolish or create a micro-
RNA target, thus affecting mRNA levels [27]. We have shown, in cultured cells, that 
miR-181b-5p binds to the rs2291007 region and abolishes the expression of FNIP2 
through binding selectively to the T allele (Fig. 2). Consistently, T carriers of rs2291007 
showed diminished FNIP2 expression in peripheral blood, and importantly, its expres-
sion strongly associates with decreased obesity-related metabolic parameters (Fig. 3).

The conservation of the 3′UTR sequence of the FNIP2 SNP across mammals allowed 
us to interrogate the functional effect of this T-to-C human-specific nucleotide change 
in mice by knocking-in the rs2291007 C variant in the mouse genome. The lack of com-
mercial antibodies for mouse Fnip2 protein precluded its quantification, but mRNA 
levels of Fnip2C and Fnip2T could be ascertained. While differences between the two var-
iants were not detected in steady-state conditions, increased levels of the Fnip2C mRNA 
were seen upon acute inhibition of RNA pol II activity with Actinomycin D, consistently 
with the prediction. Future work may uncover the physiological setting in which mRNA 
stability yields a difference in Fnip2 protein levels, and thus, on the control of mTORC1 
activity, which is seen affected in GSEA of samples from Fnip2C/C and Fnip2T/T mice 
(Fig.  5E, Additional file  1: S5E) but not acutely in cells derived from them (Fig.  4D). 
Alternatively, Fnip2 levels may be more strikingly affecting other functions reported to 
be controlled by FNIPs [28], or other, still unknown metabolic roles.

Regardless of the timing and molecular cues that provide a functional explanation for 
the differences seen in carriers of the FNIP2 T versus C SNP in healthy volunteers, there 
is a remarkable correlation between the observations in human and mouse: Fnip2C/C 
mice show the same decrease in fat content as that observed in volunteers, a difference 
that is more prominent in female mice at all ages. RNA sequencing analyses revealed 
that the transcriptome of the WAT is largely affected by the presence of the Fnip2 vari-
ant, with more than 4000 genes significantly different, in contrast to less than a dozen 
genes differentially expressed in liver samples. Moreover, samples from both livers and 
WAT from Fnip2T/T mice show a dramatic and consistent enrichment in adipogenesis 
and fatty acid metabolism-related gene sets (Fig. 5E, F; Additional file 1: Fig. S5E and 
S5F), consistently with the association between the expression of the FNIP2 T allele 
and increased adiposity found in both species. In addition, the same negative correla-
tion between the levels of human FNIP2 mRNA and body weight is seen when analyzing 
Fnip2 mRNA levels and mouse weight. This whole recapitulation is more remarkable 
when considering that rs2291007 has linkage disequilibrium with additional variants in 
the genomic region of FNIP2, which are not modeled in these novel knock-in mice, thus 
suggesting that the T-to-C change is the main modulator of human leanness within the 
FNIP2 locus.

The identification of relevant biomarkers linked to obesity and its comorbidities 
is an unsolved challenge [29]. PBMCs can serve as a source of molecular biomarkers 
for diverse metabolic alterations: PBMCs are easily sampled and mirror changes in the 
expression of metabolic genes in internal organs, thus providing accessible information 
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on changes in the early obese state [30]. Thus, based on our results, we designed a mul-
tifactorial model to predict BMI in a healthy population. We propose a peripheral blood 
biomarker for BMI composed of FNIP2, FLCN, and FNIP1 expression, plus age of the 
patient and the effect of rs2291007 (Fig. 6). Although our findings were highly consist-
ent and bootstrap validation was implemented, further studies in an independent cohort 
should be performed in order to validate the multifactorial model for BMI prediction. 
Prediction of overweight and obesity can be of paramount importance for early thera-
peutic interventions focused on obesity-related comorbidities.

Collectively, our work supports a critical role for FNIP2 in the control of human 
leanness.

Conclusions

• We found an association of rs2291007 minor allele T in the FNIP2 gene with met-
abolic and obesity-related phenotypes and with decreased muscle mass in healthy 
European individuals.

• T carriers of rs2291007 have decreased expression of FNIP2 in peripheral blood, and 
importantly, FNIP2 mRNA levels strongly associate with decreased obesity-related 
metabolic parameters.

• Fnip2C/C knock-in mice replicate the decreased adiposity and increased leanness 
observed in human volunteers.

• Primary cells derived from Fnip2C/C mice show increased mRNA stability.
• We propose a peripheral blood biomarker for BMI composed of FNIP2 expression, 

age of the patient, and the effect of rs2291007 on FNIP2 expression.
• Together, our works revealed a crucial role of FNIP2 in the control of human lean-

ness.

Methods
Subjects and sample structure

Genotyping was carried out on 790 volunteers belonging to the Platform for Clinical Tri-
als in Nutrition and Health (GENYAL Platform) of IMDEA-Food Institute. Among them, 
RNA from 161 volunteers was used for gene expression analysis and microRNA stud-
ies were performed in 89 individuals. Volunteers, aged between 18 and 72 years, were 
recruited during the period 2012–2018 and did not suffer from any serious diseases. All 
contributors signed the consent participation form. These studies were approved by the 
IMDEA Food Research Ethics Committee and methodologies conformed to the stand-
ards set by the Declaration of Helsinki.

Relevant phenotypic information is summarized in Additional file 2: Table S1 [31–40]. 
Anthropometric magnitudes were measured under standardized methods. Height (cm) 
was assessed to the nearest 0.1 cm using a stadiometer (Leicester Biológica Tecnología 
Médica SL, Barcelona, Spain). Weight (kg), fat mass (%), and muscle mass (%) were 
estimated using bioelectrical impedance analysis (Body Composition Monitor BF511-
OMRON HEALTHCARE, LT, Kyoto, Japan). Body mass index (BMI) was calculated 
using these estimates and as defined by the Quetelet Index (weight (kg)/height (m)2). 
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The World Health Organization’s criteria (WHO) was employed to catalog the volun-
teers as normal weight when BMI < 25 kg/m2 and as overweight when BMI ≥ 25 kg/m2. 
Waist and hip circumference were measured with a flexible Dry 201 metal tape, with 
measuring range 0–150 cm and 1 mm of precision (Quirumed, Valencia, Spain). Blood 
sample extractions, biochemical determinations (lipid and glycemic profiles), and nutri-
tional assessments (dietary and physical activity parameters) were collected following an 
overnight fasting as previously described [41–44].

SNP genotyping

Genetic information was obtained from NCBI-dbSNP (https:// www. ncbi. nlm. nih. gov/ 
snp/), Ensembl (http:// www. ensem bl. org/ index. html), and GWAS catalog (https:// www. 
ebi. ac. uk/ gwas/). Fifty-six SNPs in 25 genes of the mTOR pathway (Additional file 1: Fig. 
S1 and Additional file 2: Table S2) were selected.

Genomic DNA from peripheral blood was extracted using the QIAamp DNA Blood 
Mini Kit (Qiagen Sciences, Inc, Germantown, MD, USA). Genotyping was performed 
with QuantStudio 12 K Flex Real-Time PCR System (Life Technologies Inc., Carlsbad, 
CA, USA) using TaqMan OpenArray plates following the manufacturer’s instructions 
and results were analyzed using TaqMan Genotyper software.

MicroRNA experiments

Two in silico tools were used for predicting miR181 structure and binding to rs2291007 
region: TargetScanHuman (http:// www. targe tscan. org/ vert_ 72/) for prediction of micro-
RNA targets [19], and Sfold (https:// sfold. wadsw orth. org/ cgi- bin/ index. pl) for statistical 
folding of nucleic acids and studies of regulatory RNAs [20].

Sequences for FNIP2 3′UTR with rs2291007 C or T alleles were cloned into psiCheck2 
by ATUM (Newark, California). HEK-293T cells were transfected using Lipofectamine 
2000 (Life Technologies, Thermo Fisher Scientific, Waltham, MA, USA) according to the 
manufacturer’s recommendations. Each reaction contained 100 ng of either psiCheck2-
3′UTR-FNIP2-rs2291007-C or psiCheck2-3′UTR-FNIP2-rs2291007-T and 30 nM of 
miR181b mimic miRNA (mirVana® miRNA mimic, Thermo Fisher Scientific, Waltham, 
MA, USA) [45]. Relative luciferase activity (Renilla luminescence/firefly luminescence) 
was determined after transfection using the Dual-Luciferase Reporter assay system (Pro-
mega, Madison, WI, USA) as surrogate for the translational repression of FNIP2 upon 
binding to their 3′UTR of miR181b.

mRNA expression analysis

For human peripheral blood samples, we used TRIzol method or RNeasy Mini Kit (Qia-
gen, Germantown, MD, USA) following the manufacturer’s conditions to obtain total 
RNA. Reverse transcription was performed with the High-Capacity cDNA Reverse 
Transcription kit (Thermo Fisher, Madrid, Spain), following the manufacturer’s instruc-
tions. RT-PCR reactions were performed as previously described [46] using QuantStu-
dio 12 K Flex Real-Time PCR System (Life Technologies Inc., Carlsbad, CA, USA), with 
specific Taqman probes: FNIP2 (Hs01574322_m1), FLCN (Hs00376065_m1), FNIP1 
(Hs00382846_m1), GAPDH (Hs02786624_g1). The  2−ΔΔCt method was applied to calcu-
late the relative gene expression. COSMIC Cell Lines Project (https:// cancer. sanger. ac. 

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
http://www.ensembl.org/index.html
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
http://www.targetscan.org/vert_72/
https://sfold.wadsworth.org/cgi-bin/index.pl
https://cancer.sanger.ac.uk/cell_lines
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uk/ cell_ lines) was used to download genotypes and gene expression values for FNIP2 in 
965 cell lines.

For mouse tissues and primary cells, RNA was extracted using TRIzol together with 
RNeasy Mini Kit (Qiagen, 74106) or Direct-zol RNA Miniprep (Zymo Research, R2051). 
Reverse transcription was performed using SuperScript IV VILO Master Mix (Invitro-
gen, 11756500). Quantitative real-time PCR was run in triplicates using GoTaq qPCR 
Master Mix (Promega, A6001) in a QuantStudio 6 Flex Real-Time PCR System thermo-
cycler (Applied Biosystems). The  2−ΔΔCt method was applied to calculate the relative 
gene expression, using β-actin as reference gene.

microRNA expression analysis

Total RNA obtained from human peripheral blood samples and from mouse primary 
cells was retrotranscribed using TaqMan microRNA reverse transcription kit (Applied 
Biosystems, 4366596). Real-time PCR was run in triplicates using TaqMan Fast 
Advanced Master Mix (Applied Biosystems, 4444557) with specific TaqMan probes: 
hsa-miR-181b (4427975, MI0018778), U6 snRNA (4427975, NR_004394), mmu-miR-
181b-5p (4440886, MI0000723), and snoRNA202 (4427975, AF357327).

Mouse genome engineering

To engineer Fnip2 rs2299007 C allele in mice, C57BL/6 mouse blastocysts were injected 
with Cas9, a single-guide (sg) RNA targeting the sequence of interest and a repair sin-
gle-stranded oligonucleotide containing the intended mutations flanked by 70 bp of 
homology arms adjacent to the double-strand break site. Genotyping was performed 
by specific amplification followed by restriction fragment length polymorphism (RFLP) 
and/or Sanger sequencing.

sgRNA: GAT AAG TGA TAT GAA TGT AT
Repair single-stranded oligonucleotide:
CCG AGC AGA AGT GTC TCA GTG TCC TGT AAT GAC CTC TTC TAG CAT GTT GCA 

GTT TTA TAT TTG TTA AGT TGA TAA GTG ATA TGA ACG TAT ACG CAA TTG TGT ATG 
TTT TCA AAA AGG ACA ATG AAA ATT TAA AAT GTA GCT TCC ACA CTT GTG CAT 
AAT TCC A

Mouse experimentation

All animal procedures carried out at the CNIO were performed according to proto-
cols approved by the CNIO-ISCIII Ethics Committee for Research and Animal Welfare 
(CEIyBA), under protocol number PROEX 015/18. Mice were housed under specific 
pathogen-free (SPF) conditions, at 22 °C and with 12-h dark/light cycles. Mice were fed 
with a standard chow diet (Harlan Teklad 2018). For fasting experiments, mice were 
placed in clean cages without access to food from 4 pm to 8 am.

Animal imaging

For densitometry analysis, body composition (body weight, fat mass and lean muscle 
mass) was measured using dual-energy X-ray absorptiometry (DEXA) PIXImus, Mouse 
Densitometer (GE Lunar co, Madison, WI, USA), software version 1.46. During the 

https://cancer.sanger.ac.uk/cell_lines
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measurements, mice were anesthetized with isoflurane. Quality control was performed 
using a calibrated phantom before imaging.

Mouse embryonic fibroblasts

MEFs were isolated from E13.5 embryos using a protocol consisting of a chemical diges-
tion with trypsin followed by mechanical disaggregation. For amino acid starvation 
experiments, cells were rinsed 3 times and placed in RPMI medium without amino acids 
(US Biological, R8999-04A) supplemented with 10% dialyzed serum. Amino acid stimu-
lation was performed adding a cocktail containing the 20 amino acids (with concentra-
tion as in RPMI) directly to cell culture plates.

Immunoblotting

Cells were rinsed once with ice-cold PBS and lysed in ice-cold protein lysis buffer con-
taining 50 mM HEPES (pH 7.4), 40 mM NaCl, 2 mM EDTA, 1.5 mM sodium orthova-
nadate, 50 mM NaF, 10 mM pyrophosphate, 10 mM glycerophosphate, and 1% Triton 
X-100 and one tablet of complete protease inhibitors (Roche) per 25 ml. Cell lysates were 
cleared by centrifugation at maximum speed for 10 min. Protein content was measured 
from extracts with BCA Protein Assay. Protein extracts were denatured by adding sam-
ple buffer and boiling for 5 min, resolved by SDS-PAGE and analyzed by immunoblot-
ting. Western blot analyses were performed according to standard procedures. Results 
were visualized using Odyssey Infrared Imaging System LI-COR Biosciences. The fol-
lowing primary antibodies were used: P-T389-S6K (Cell Signaling Technology, 9234), 
S6K (Cell Signaling Technology, 2708), TFEB (Bethyl Laboratories, A303-673A), and 
β-actin (Sigma-Aldrich, A1978).

mRNA stability measurements

For mRNA stability measurements MEFs were treated with 5 μg/mL Actinomycin D 
for 2 and 4 h to stop transcription. RNA was extracted using Direct-zol RNA Miniprep 
(Zymo Research, R2051).

Statistical analysis in human studies

Descriptive analysis was implemented for different continuous and categorical variables. 
Associations between gene expression variables were analyzed through Pearson correla-
tion coefficients and tested through the corresponding test. Differences between gene 
expression in two groups were tested through Student’s t test, or through linear mod-
els with adjustment variables. SNPs were categorized by genotype (homozygote minor 
allele, heterozygote, and homozygote major allele). Deviations from Hardy-Weinberg 
equilibrium of genotype frequencies at individual loci were assessed using standard χ2 
tests. Linkage disequilibrium was quantified through the r2 and D’ statistics.

Associations of the SNPs with numerical variables were modeled through linear 
regression on the SNP adjusted by sex and age. Associations with binary variables were 
modeled through logistic regression adjusted by sex and age. An additive model for the 
SNPs (effect in the homozygote minor allele is twice as much as that of the heterozy-
gote) was considered by default, as in general it gave better fits, although in some cases a 
recessive or dominant model was considered.
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A final multifactorial model to predict BMI was validated through bootstrap, using 
2000 bootstrap samples, which allowed to correct the performance statistics (R2, MSE 
or Mean Square Error) by optimism in order to assess its predictive power and possible 
overfit.

This final model was obtained by sequentially adding SNP and gene expression vari-
ables to a basal model with only sex and age as predictor variables. A new variable was 
accepted if it was statistically significant and in addition produced a new model with 
an increased optimism-corrected R2, in order to prevent overfit. In the final model, the 
relative importance for the different predictor variables was estimated from the χ2- df 
(degrees of freedom) of the corresponding variables.

All tests were bilateral, with a significance level of 0.05. Ninety-five percent confidence 
intervals (95% CI) were used in parameter estimates (betas and odds ratios). Bonferroni 
method was applied for multiple-test correction of the p-values. All statistical analyses 
were performed using the R statistical software, version 3.6.1 (www.r- proje ct. org).

Statistical analysis in mouse studies

Statistical analyses were carried out with Prism 8 (GraphPad). Experiments including 
a second variable (e.g., time or nutritional status) were analyzed using 2-way ANOVA 
with Sidak’s multiple comparison post-test. Where appropriate, the area under the curve 
(AUC) was calculated. Unpaired Student’s t test was used for single comparisons. Asso-
ciations between gene expression levels and body weight were modeled using a simple 
linear regression.
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